光环伴形培养基中的离子气体通过热阳光阳光层(TSZ)效应在宇宙微波背景上留下烙印。来自活性银河核(AGN)和超新星的反馈会影响晕孔集成TSZ通量的测量($ y_ \ mathrm {sz} $),并导致其与光晕质量的关系($ y_ \ mathrm {sz} -mm $ )偏离病毒定理的自相似幂律预测。我们对使用骆驼,一套流体动力模拟的套件进行了全面研究,反馈处方的差异很大。我们使用两个机器学习工具(随机森林和符号回归)的组合来搜索$ y-m $关系的类似物,这对低质量的反馈过程($ m \ sillesim 10^{14} \,h^, {-1} \,m_ \ odot $);我们发现,仅替换$ y \ rightarrow y(1+m _*/m_ \ mathrm {gas})$在关系中使其非常相似。这可以用作低质量簇和星系组的强大多波长质量代理。我们的方法通常对于提高其他天体分级关系的有效性领域通常也很有用。我们还预测,$ y-m $关系的测量值可以在反馈参数的某些组合和/或排除超级新闻和AGN反馈模型的主要部分,以提供百分比的约束。艺术流体动力模拟。我们的结果对于使用即将进行的SZ调查(例如SO,CMB-S4)和Galaxy Surveys(例如Desi和Rubin)来限制Baryonic反馈的性质。最后,我们发现,$ y-m _*$的另一种关系提供了有关反馈的补充信息,而不是$ y-m $。
translated by 谷歌翻译
理论不确定性限制了我们从诸如Thermal Sunyaev-Zel'Dovich(TSZ)效应等重的宇宙学信息中提取宇宙学信息的能力。 TSZ效应由电子压力场采购,取决于通常由昂贵的流体动力模拟建模的男性物理学。我们在Illustristng-300宇宙学模拟上训练神经网络,以预测仅重力模拟的星系簇中的连续电子压力场。对于神经网络而言,建模群集具有挑战性,因为大多数气体压力集中在少数体素中,甚至最大的流体动力模拟只包含几百个可以用于训练的簇。我们选择采用旋转等效的深度体系结构直接在暗物质颗粒集上运行,而不是传统的卷积神经网(CNN)体系结构。我们认为,基于集合的体系结构比CNN具有不同的优势。例如,我们可以执行精确的旋转和置换量比,并在TSZ领域中纳入现有的知识,并与宇宙学标准的稀疏领域一起工作。我们使用单独的,物理上有意义的模块组成我们的体系结构,使其可以解释。例如,我们可以分别研究局部和集群尺度环境的影响,确定簇三轴性具有可忽略的影响,并训练一个纠正错误居中的模块。我们的模型在适合相同模拟数据的分析概况上提高了70%。我们认为,电子压力场被视为仅重力模拟的函数,具有固有的随机性,并通过向网络的条件vae扩展进行建模。这种修饰可进一步提高7%,但受我们的小型培训集的限制。 (简略)
translated by 谷歌翻译
复杂的系统(恒星,超新星,星系和群集)通常在可观察性质(例如,亮度,速度分散,振荡周期,温度)之间表现出低散射关系。这些缩放关系可以照亮底层物理,可以为估计质量和距离提供观测工具。机器学习可以在抽象的高维参数空间中寻找新的扩展关系(或对现有关系的简单扩展)提供系统的系统。我们使用称为符号回归(SR)的机器学习工具,该工具以分析方程的形式在给定的数据集中绘制模式。我们专注于Sunyaev-Zeldovich Flux $ - $群集质量关系($ Y_ \ MATHRM {SZ} -M $),它会影响来自集群丰富数据的宇宙学参数的推断。使用SR对来自IllustrySTG流体动力学模拟的数据,我们找到了一个新的群集质量代理,它结合了$ Y_ \ MATHRM {SZ} $和电离气体的浓度($ c_ \ mathrm {gas} $):$ m \ propto y_ \ mathrm {ccon} ^ {3/5} \ Equiv y_ \ mathrm {sz} ^ {3/5}(1-a \,c_ \ mathrm {gas})$。 $ y_ \ mathrm {coct} $减少预测$ m $的分散$ \ sim 20-30 $%的大型群集($ m \ gtrsim 10 ^ {14} \,h ^ { - 1} \,m_ \ oott $)在高和低频的高频上,与使用只需$ y_ \ mathrm {sz} $相比。我们表明对$ C_ \ MATHRM {GARS} $的依赖性与展示比其郊区更大的分散的集群核心。最后,我们从骆驼项目的模拟中测试$ y_ \ mathrm {cenc} $ in clusters,并显示$ y_ \ mathrm {crc} $对宇宙学,天体物理学,划分物理学和宇宙方差的变化是稳健的。我们的结果和方法可以用于电流和即将到来的CMB和X射线调查的精确多波长簇质量估计,如ACT,所以,SPT,肌肉和CMB-S4。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
主动学习(AL)是一种众所周知的标准方法,可通过首先标记基于查询策略的最多信息的样本来有效地获得带注释的数据。过去,已经提出了各种各样的查询策略,每一代新策略都会增加运行时并增加了更复杂的功能。但是,据我们所知,这些策略都没有在不同应用领域的大量数据集上始终如一。基本上,大多数现有的AL策略都是两种简单的启发式信息和代表性的结合,而巨大的差异在于通常相互矛盾的启发式方法的结合。在本文中,我们提出了Imital,这是一种独立于领域的新型查询策略,该策略将AL编码为学习级别的问题,并学习两种启发式方法之间的最佳组合。我们在纯合成数据集上进行大规模模拟的AL运行训练Imital。为了证明Imital经过了成功培训,我们进行了广泛的评估,将来自广泛域以及其他7种查询策略的13个不同数据集的策略进行比较。
translated by 谷歌翻译
观察是理解和研究人类行为和精神状态的重要工具。但是,编码人类行为是一项耗时,昂贵的任务,在这种任务中,可靠性可能难以实现,偏见是一种风险。机器学习(ML)方法提供了提高可靠性,降低成本并扩展行为编码以在临床和研究环境中应用的行为编码的方法。在这里,我们使用计算机愿景来得出黄金标准行为评级系统的行为代码或概念,为精神卫生专业人员提供熟悉的解释。从有或没有强迫症的儿童和青少年的临床诊断访谈视频中提取了特征。我们的计算评级与人类的专家评级相当,在负面情绪,活动水平/唤醒和焦虑方面。为了关注和积极影响概念,我们的ML等级表现合理。但是,凝视和发声的结果表明需要提高数据质量或其他数据方式。
translated by 谷歌翻译
IoT设备收集的数据通常是私人的,并且在各种用户之间具有巨大的多样性。因此,学习需要使用可用的代表性数据样本进行预训练,在物联网设备上部署预训练的模型,并使用本地数据在设备上调整已部署的模型。这种用于深度学习授权应用程序的设备改编需要数据和记忆效率。但是,现有的基于梯度的元学习方案无法支持记忆有效的适应。为此,我们提出了P-Meta,这是一种新的元学习方法,该方法可以强制执行结构的部分参数更新,同时确保快速概括到看不见的任务。对几片图像分类和强化学习任务的评估表明,与最先进的几次适应方法相比。
translated by 谷歌翻译
像人类一样自然而然地处理和保留新信息的能力是在训练神经网络时受到极大追捧的壮举。不幸的是,传统优化算法通常需要在培训时间和更新WRT期间可用的大量数据。培训过程完成后,新数据很难。实际上,当出现新数据或任务时,由于神经网络容易遭受灾难性遗忘,因此可能会丢失先前的进展。灾难性遗忘描述了当神经网络在获得新信息时完全忘记以前的知识时,这种现象。我们提出了一种新颖的培训算法,称为培训,通过解释我们利用层面相关性传播的方式,以保留神经网络在培训新数据时已经在先前任务中学习的信息。该方法在一系列基准数据集以及更复杂的数据上进行评估。我们的方法不仅成功地保留了神经网络中旧任务的知识,而且比其他最先进的解决方案更有效地进行了资源。
translated by 谷歌翻译
时间序列预测在城市生活中广泛应用,从空气质量监测到交通分析。但是,准确的时间序列预测是具有挑战性的,因为现实世界中的时间序列遇到了分配转移问题,在该问题中,它们的统计属性会随着时间而变化。尽管对域适应或概括的分布变化的广泛解决方案,但它们在未知的,不断变化的分布变化中无法有效发挥作用,这在时间序列中很常见。在本文中,我们提出了超时性预测(HTSF),这是一个基于超网络的框架,用于在分配变化下预测准确的时间序列。 HTSF以端到端的方式共同学习时间变化的分布和相应的预测模型。具体而言,HTSF利用超层来学习分布移位的最佳表征,从而为主层生成模型参数以进行准确的预测。我们将HTSF实施为可扩展的框架,可以结合不同的时间序列预测模型,例如RNN和Transformers。对9个基准测试的广泛实验表明,HTSF达到了最先进的表现。
translated by 谷歌翻译
新兴的边缘情报应用程序要求服务器重新训练和更新部署在远程边缘节点上的深神经网络,以利用新收集的数据示例。不幸的是,由于高度严格的通信资源,在实践中可能不可能连续向这些边缘节点发送全面更新的权重。在本文中,我们提出了重量的深层部分更新范式,该范式巧妙地选择了一小部分权重以在每个服务器到边缘通信中进行更新,同时与完整更新相比实现了相似的性能。我们的方法是通过分析上限的部分更新和完整更新之间的损失差异来建立的,并且只能更新权重,从而对上限产生最大的贡献。广泛的实验结果证明了我们部分更新方法的功效,该方法在更新少量的权重的同时,可以达到高推理精度。
translated by 谷歌翻译